Newborn Screening for hereditary tyrosinemia type I: succinylacetone isolation without hydrazine

David C. Kasper1,*, Thomas F. Metz1,2, Thomas P. Machtfaber1, Kurt R. Harken3, Anne Gottschalk1, Michael Mark1, Richard Lukacin4

1Department of Pediatrics and Adolescent Medicine, Medical University of Vienna/Austria
2Research Core Unit of Pediatric Biochemistry and Analytics, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna/Austria
3Chromsystems Instruments & Chemicals GmbH, Gräfelfing/Munich, Germany
4Corresponding authors: david.kasper@meduniwien.ac.at; lukacin@chromsystems.de

ABSTRACT AND INTRODUCTION

Newborn screening for hereditary tyrosinemia type I (HT 1) is mandatory to identify infants at risk before lifethreatening symptoms occur [1–3]. The analysis of tyrosine alone is limited, and might lead to false-negative results. Consequently, the analysis of succinylacetone (SUAC) is needed [1–4]. Current protocols are time-consuming, and above all, include hazardous reagents such hydrazine. We evaluated a novel, commercial kit to analyze amino acids, acylcarnitines and SUAC with a significantly less harmful protocol established in a newborn screening laboratory. Dried blood spot (DBS) specimens from 4,683 newborns and samples from known patients with inborn errors of metabolism (IEM) were analyzed by a novel protocol and compared to an in-house screening assay. All samples were derivatized with butanol/HCl after extraction from 1/8-inch DBS punches. For the novel protocol, the residual blood spots were extracted separately for SUAC, converted into hydrazide, combined with amino acids and acylcarnitines, and subsequently analyzed by mass spectrometry using internal isotope-labeled standards. All newborns were successfully tested, and 74 patients with IEMs including three HT 1 (SUAC 1.50, 4.80 and 6.49), tyrosine levels 93.10, 172.40, and 317.73, respectively) were detected accurately. The mean SUAC level in non-affected newborns was 0.68 μmol/l (cut-off 1.29 μmol/l). The novel assay was demonstrated to be accurate in the detection of newborns with IEM, robust, and above all, without the risk of the exposure to highly toxic reagents and requirement of additional equipment for toxic fume evacuation.

RESULTS

Figure 1: Method comparison of two mass spectrometry protocols for amino acid analysis. Black boxes: novel kit including SUAC from Chromsystems, white boxes: reference method.

Figure 2: Method comparison of two mass spectrometry protocols for acylcarnitine analysis. Black boxes: novel kit including SUAC from Chromsystems, white boxes: reference method.

Figure 3: Scatter plot of succinylacetone vs tyrosine levels in non-affected newborns and patients with tyrosinemia type I. White dots represent three patients with HT1 (cut-off for SUAC: 1.29 μmol/l, for Tyr: 255 μmol/l). Black dots: non-affected newborns.

CONCLUSION

Tyrosine as the only marker is insufficient to verify HT 1. Inclusion of SUAC in newborn screening programs should increase the safe identification of HT 1 in neonates and minimise false positive or false negative results.

Beside other IEMs all three patient samples with the known target disease HT 1 were identified according to the significant elevated HT 1 specific marker SUAC with the new Chromsystems’ MassChrom® Amino Acids and Acylcarnitines from Dried Blood kit.

The novel assay was demonstrated to be sensitive, rapid, and robust, and above all, without the risk of the exposure to highly toxic reagents.

References: